Anti-Aging Medicine is Here, Free Consultation for USA Citizens. Must be over the age of 30.

The exciting news is we are on the threshold of a medical revolution unlike any breakthrough in human history. Scientists are making predictions that all diseases will be cured in the next 30 years and we will enter the era of human immortality around 2040. It’s not enough to live longer healthier lives, but to live youthfully. Visit http://www.HGH.tv to find out what you can do now if you are experiencing the premature symptoms of aging.

Stem Cell Therapy is in its infancy, and despite mixed and positive reviews on its results in clinical and case studies, it shows promising potential, because ultimately all diseases have to do with cellular / genetic issues, such as deficiencies in cells, DNA or our immune systems are improperly modulated. The bottom line mostly all diseases and poor health has a genetic basis one way or the other. Until the kinks are fully worked out of Stem Cell Therapy, consider Hormone Replacement Therapy, which has a proven record, until genetic medicine helps to solve these issues. Right now there are bio-identical hormones you can replenish your body with for amazing anti-aging results.

Testosterone Injections and Testosterone Cream

For 80 years physicians and scientists have been experimenting with testosterone on humans with amazing results. Unfortunately, there is a stigma surrounding testosterone, that it is only for professional athletes, Olympic body builders, looking for the edge. The good news is more than 50 million men and women are using it as a natural solution for slowing down and even reversing the symptoms of aging. Testosterone is important for and strongly linked with muscle growth, sex drive, motivation and happy mood. Visit the [Evolution Institute](http://www.HGH.tv) to find out more about Adult Testosterone Replacement Therapy Programs: http://www.HGH.tv. You must be a USA resident, above the age of 30 and experiencing the premature symptoms of aging to qualify.

A simple blood test can determine how low your testosterone levels have become.

HGH Human Growth Hormone Injection Therapy

In the late 1950’s, scientists crushed up the pituitary glands of cadavers and injected them into kids who were under the age of 18, before their growth plates closed, they got taller. In adults who were over the age of 18, they felt rejuvenated and noticed they healed faster. There was one problem, because they were using cadavers as a source, sometimes people would develop cold sores as a result. It was not until they discovered how to use genetic engineering to synthesize a substance that those issues of rare disease transmission stopped. HGH is hailed as the anti-aging hormone, it’s really just a long complicated protein. Decades after those first experiments they have discovered HGH’s ability to produce life altering changes, people look and feel younger, sex is better, body composition changes where fat, especially around the mid section was reduced, and muscle was regained. Their was some controversy and debate about the clinical significance of HGH’s effects on body composition changes where fat, especially around the mid section was reduced, and muscle was regained. If you are feeling tired, lazy, unmotivated, lethargic you might be HGH deficient. It feels a bit cloudy at times, your memory is not as good as it used to be and you feel a bit moody, you might be HGH deficient. To find out more information about HGH Human Growth Hormone Injections visit: http://www.HGH.tv. You must be a USA resident, above the age of 30 and experiencing the premature symptoms of aging to qualify.

A complete and total lifestyle change, Hormone Replacement Therapy, Diet and Exercise can have a dramatic positive effect on your quality of life.
Bernard Siegel to Deliver Keynote Addresses at Midwest Conference on Stem Cell and Therapy and BioFlorida …

PALM BEACH, Fla.–(BUSINESS WIRE)–

Genetics Policy Institute (GPI) announced today that Bernard Siegel, Executive Director of GPI, will make keynote presentations this month at regional conferences: Midwest Conference on Stem Cell Biology October 5-7 in Rochester, Michigan and BioFlorida Conference 2012 October 7-9 in Miami, Florida.

Siegel will present a keynote address titled The Power of Advocacy at the Midwest Conference on Stem and Therapy. The Genetics Policy Institute joined with the Oakland University William Beaumont Institute of Cell and Regenerative Medicine (ISCRM) as a collaborating partner for the event. Researchers from hospitals, medical organizations, academic institutions and the business community throughout the Midwest will only the latest advances in this rapidly expanding field of medical science, but the ethical and moral issues it presents.

"I am pleased to participate in these important conferences, which showcase the latest scientific developments in their respective regions and beyond. ISCRM and the World Stem Cell Summit have a strong connection. The Institute was officially launched at our 2010 Summit in Detroit, said Bernard Siegel, GPI’s Executive Director and founder of the annual World Stem Cell Summit.

BioFlorida’s 15th annual Conference is the premier event for Florida’s bioscience community. This year’s event will bring together more than 500 professionals from across Florida, the Southeast and the nation to discuss topics related to product development, scientific research, business development, public policy.

Siegel’s keynote address at BioFlorida is titled: The Mandate to Deliver Cures: Aligning Patient Advocacy and Science. Former Governor Jeb Bush will deliver the second keynote at BioFlorida’s annual Conference.

The 2012 World Stem Cell Summit is in West Palm Beach, Florida this December, so we have been working with the biotechnology community here. I am delighted to partner with BioFlorida as they advance Florida’s bioscience industry," said Siegel, who also serves on the Executive Committee of the Alliance for Regenerative Medicine and Board of the Coalition for Advancement of Medical Research. He serves as spokesperson for the Cell Action Coalition.

ABOUT GPI: The Genetics Policy Institute (GPI) supports stem cell research to develop therapeutics and pursues its mission by honoring leadership through the Stem Cell Action Awards, producing the World Stem Cell Summit, publishing the World Stem Cell Report, organizing educational initiatives and fostering strategic collaborations. For more information, visit www.genpol.org.

ABOUT THE WORLD STEM CELL SUMMIT: The 2012 World Stem Cell Summit is presented by GPI and co-organized by the Interdisciplinary Stem Cell Institute (ISCI) at the University of Miami Miller School of Medicine, Diabetes Research Institute, Beckman Research Institute at City of Hope, Karolinska Institute (home of the Nobel Prize in Physiology and Medicine), International Translational Regenerative Medicine Center (ITRC) at Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University. The Summit is the flagship event for the world stem cell community. The 2012 Summit will be held at the Palm Beach County Convention Center, West Palm Beach, Florida, December 3-5, 2012. For more information, visit www.worldstemcellsummit.com

Continued here:
Bernard Siegel to Deliver Keynote Addresses at Midwest Conference on Stem Cell Biology and Therapy

Baby Mice Born from Eggs Made from Stem Cells
Mouse pups from induced pluripotent stem cell-derived eggs; image courtesy of Katsuhiko Hayashi

Stem cells have been coaxed into creating everything from liver cells to beating heart tissue. Recently, these cells were even used to make fertile mouse sperm, suggesting that stem cell technology might eventually play a role in the treatment of human infertility.

Now two types of stem cells have been turned into viable mouse egg cells that were fertilized and eventually healthy baby mice. Details of this achievement were published online October 4 in Science.

Katsuhiko Hayashi, of Kyoto University's School of Medicine, were able to create the eggs with embryos as well as with induced pluripotent stem cells (formed from adult cells).

The team started with female embryonic stem cells and then coaxed them genetically to revert to an earlier developmental stage (primordial germ cell-like cells). These cells were blended with gonadal somatic cells in the development of sexual differentiation, to create reconstituted ovaries. The researchers then transplanted these assemblages into female mice (in either the actual ovary or the kidney) for safekeeping and to allow the cells to mature into oocytes in a natural environment.

Healthy adult mice from litter produced from induced pluripotent stem cell-based oocytes; image courtesy of Katsuhiko Hayashi

To test the eggs' fertility, the new oocytes were removed from the mice for an in vitro fertilization with mouse sperm and then re-implanted into the female mice. The experimental females went on to bear normally and fertile offspring. The procedure was then also performed successfully with induced pluripotent stem cells taken from adult skin cells with similar results.

Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, the researchers noted in their paper, not only in mice, but also in other mammals, including humans.

More:
Baby Mice Born from Eggs Made from Stem Cells

ORF Genetics to Offer endotoxin- and Animal-free FGFb and mLIF for Stem Cell Research

REYKJAVIK, Iceland, October 4, 2012 /PRNewswire/ — ORF Genetics announced today that the company has added endotoxin- and animal-free human Fibroblast Growth Factor Basic (FGF basic) and mouse Leukemia Inhibitory Factor (mouse LIF) to its portfolio of growth factors for stem cell research.

Most growth factors applied in stem cell research today are made in E. coli bacteria, which produce endotoxins that can have adverse effect on stem cell cultures. Other manufacturers of growth factors have various methods to remove these endotoxins, but traces inevitably remain, which can lead to increased death rate of cells and other effects in cell cultures. Other growth factors on the market today are made by animal cells. However, many researchers prefer to use growth factors of non-animal origin to exclude risks of viral contamination and of growth factor homologs.

This has led to a market demand for alternative sources of animal-free growth factors, void of endotoxin. ORF Genetics' unique growth factors are produced in the seeds of the barley plant, which does not produce endotoxins or other substances toxic to mammalian cells.

MORE:
Baby Mice Born from Eggs Made from Stem Cells

ORF Genetics to Offer endotoxin- and Animal-free FGFb and mLIF for Stem Cell Research

REYKJAVIK, Iceland, October 4, 2012 /PRNewswire/ — ORF Genetics announced today that the company has added endotoxin- and animal-free human Fibroblast Growth Factor Basic (FGF basic) and mouse Leukemia Inhibitory Factor (mouse LIF) to its portfolio of growth factors for stem cell research.

Most growth factors applied in stem cell research today are made in E. coli bacteria, which produce endotoxins that can have adverse effect on stem cell cultures. Other manufacturers of growth factors have various methods to remove these endotoxins, but traces inevitably remain, which can lead to increased death rate of cells and other effects in cell cultures. Other growth factors on the market today are made by animal cells. However, many researchers prefer to use growth factors of non-animal origin to exclude risks of viral contamination and of growth factor homologs.

This has led to a market demand for alternative sources of animal-free growth factors, void of endotoxin. ORF Genetics' unique growth factors are produced in the seeds of the barley plant, which does not produce endotoxins or other substances toxic to mammalian cells.
FGF basic and mouse LIF are key growth factors for the cultivation of their respective stem cells, i.e. FGF human stem cells and mouse LIF for mouse stem cells. Each protein is used to expand the stem cells' population before researchers make them differentiate into various cell types, such as heart, liver or neural cells.

“ORF Genetics has built a reputation for offering the first plant-made, endotoxin-free and animal-free portfolio for stem cell researchers. As we are producing these growth factors in our novel plant expression system ORFEUS, we are very happy to be able to offer these high quality growth factors at more efficient prices,” said Björn Var, CEO of ORF Genetics.

ORF Genetics is a world leader of plant made growth factors and offers a portfolio of endotoxin- and animal-free growth factors for human stem cell research. The company’s production takes place in a biorisk-free production system in barley, bypassing conventional bacteria and animal cell production systems. The cultivation takes place in greenhouses in inert volcanic pumice, using renewable geothermal energy.

For more information please contact:

Dr. Hakon Birgisson, Director of Global Market Development
Tel: +354-821-1585
email:hakon.birgisson@orfgenetics.com

Here is the original post:
ORF Genetics to Offer endotoxin- and Animal-free FGFb and mLIF for Stem Cell Research

Parkinson’s Disease Cure May Be In Stem Cell Research, But...

Editor’s Choice Main Category: Parkinson’s Disease Also Included In: Stem Cell Research Article Date: 11:00 PDT

Current ratings for: Parkinson’s Disease Cure May Be In Stem Cell Research, But...

An advanced stem cell growth solution that may potentially lead to a search for a Parkinson’s cure, according to a communiqué released today by Rainbow Biosciences. The company is working towards having such technology ready to go as soon as possible.

Scientists say that ethical dilemmas and government restrictions have made stem cell research breakthroughs more difficult to achieve. Add to this the difficulty in controlling stem cell behavior in the lab, and the task becomes even harder.

Rainbow Biosciences says that one way to accelerate research projects and make them advance more efficiently is to increase the availability of top-quality adult stem cells for research.

Rainbow says it is working on this. It is in discussions with Regenetech regarding acquiring a license to expand its Rotary Cell Culture System, which was originally developed by NASA.

Rainbow Biosciences wrote:

The company would like to bring the bioreactor to “emerging research markets” which do not face as many roadblocks. They say this will help activate “billions of dollars’ worth of research” into potential cures for diseases, as well as some of the disorders of the nervous system.

Rainbow Biosciences says that this new addition to the stem cell research world will compete alongside giants, such as Amgen Inc., Celgene Corporation, Gilead Sciences Inc., and Gynzyme Corp.

In 2011, scientists from the University of Edinburgh reported in the journal Nature Communications that they had made a “breakthrough” in Parkinson’s disease. They had successfully grown stem cells from the skin of people with rapidly progressing Parkinson’s. The cells, which mimic Parkinson’s features, should help researchers u
disease more accurately. They added that with the stem cells they may also determine why exactly some people develop Parkinson’s disease.

Continue reading here:
Parkinson’s Disease Cure May Be In Stem Cell Research, But...

RBCC: NASA Bioreactor Could Speed Parkinson’s Research

NOOKOMIS, Fla.—(BUSINESS WIRE)—

Stem cell research may hold the key to a cure for Parkinson’s disease. The only problem is, stem cell research is not advanced as quickly as patients need it to. Rainbow BioSciences, the biotech subsidiary of Rainbow Coral Corp. (RBCC) is working to market an advanced stem cell growth solution that could potentially energize the search for a cure.

Currently, government restrictions and ethical dilemmas serve as roadblocks to fast-paced stem cell research. Even when these roadblocks are absent, controlling the behavior of stem cells in a laboratory isn’t easy. Helping speed research projects up and make them more efficient is to raise the number of high-quality adult stem cells available for that research.

RBCC is working to do just that. The company has engaged Regenetech in discussions regarding the potential acquisition of a license to perform cell expansion using that company’s Rotary Cell Culture System™.

Originally developed by NASA, the Rotary Cell Culture System™ is a rotating-wall bioreactor designed to grow human cells in simulated weightlessness. Cell cultures, including stem cells, grown inside the bioreactor look and function much closer to human cells grown within the body than the flat cell cultures grown within Petri dishes.

By bringing the bioreactor to emerging research markets where stem cell research faces fewer roadblocks, RBCC hopes to help kickstart billions of dollars worth of research into possible cures for Parkinson’s and other neurological disorders.

RBCC plans to offer new technology to compete in the stem-cell research industry alongside Amgen, Inc. (AMGN), Celgene Corporation (CELG), Genzyme Corp. (NASDAQ:GENZ) and Gilead Sciences Inc. (GILD).

For more information on Rainbow BioSciences, please visit www.rainbowbiosciences.com/investors.html.

About Rainbow BioSciences

Read this article:
RBCC: NASA Bioreactor Could Speed Parkinson’s Research

Stem cell transplant survivors at increased risk of developing heart disease, study

ScienceDaily (Oct. 3, 2012) New research appearing online October 3 in Blood, the Journal of the American Society of Hematology (ASH), suggests that long-term survivors of hematopoietic cell transplants (HCT) are at an increased risk of developing heart disease risk factors such as high blood pressure, diabetes, and high cholesterol when compared to the general population. Transplant recipients who received chemotherapy, radiation, or both may be more at risk. The study, performed at the University of California, San Francisco, suggests that these patients should be monitored for heart disease risk factors, such as high blood pressure, diabetes, and high cholesterol, and treated before and after transplant to prevent or delay the development of heart disease. The study also provides helpful information for transplant physicians to use in patient counseling and treatment planning.
the general population. These risk factors, combined with exposure to pre-HCT therapy, contribute to an increased risk of heart disease over time.

HCT, the transplantation of blood-forming stem cells from the bone marrow, circulating blood, or umbilical blood, is the primary treatment option for many patients with blood disorders. The healthy transplanted cells replace patients' damaged cells that caused their illness. Advances in transplantation strategies have contributed to improved patient outcomes, resulting in a growing number of long-term transplant survivors who struggle with one or more chronic, post-transplant health conditions. Previous researchers have linked survivors' exposure to potentially heart-damaging pre-transplant chemotherapy and radiation or the life-threatening transplant complication known as graft-versus-host-disease (GVHD) can increase their risk of developing heart disease and its associated risk factors. However, there have been limited data to validate the contribution of pre-conditioning chemotherapy or radiation and GVHD to the eventual development of heart disease in long-term HCT survivors.

“While we know that heart disease is a real concern for long-term HCT survivors, small sample sizes and long-term follow up in previous studies have only allowed us to look at a small piece of the puzzle of how heart disease develops in these patients,” said Saro H. Armenian, DO, MPH, the study’s first author, Assistant in the Division of Outcomes Research, and Medical Director of the Pediatric Survivorship Clinic in the Cancer Survivorship Program at City of Hope in Duarte, CA. “Our study sought to better determine the factors before and after transplant that can lead to heart disease in a large group of transplant recipients.”

In order to more thoroughly evaluate heart disease risk and development in HCT recipients, Dr. Armenian and his team of researchers designed a retrospective study to evaluate factors that may affect a survivor’s risk of high blood pressure, diabetes, and high cholesterol after HCT. These factors included transplant recipient’s exposure to pre-transplant chemotherapy and radiation, conditioning therapy for HCT, their type of HCT transplant, and whether they developed and were treated for GVHD post transplant.

To better determine HCT survivors’ incidence of high blood pressure, diabetes, and high cholesterol compared to the general population, researchers analyzed medical records of 1,885 patients who underwent a first-time blood cancer at City of Hope between 1995 and 2004 and had survived at least one year. The National Health and Nutrition Examination Survey was used to generate expected heart disease risk factor rates for the general population.

Following their analysis, researchers found a higher prevalence of high blood pressure, diabetes, and high cholesterol in long-term HCT transplant survivors when compared to the general population. HCT conditioning with total body radiation was associated with a 1.5-fold increase in risk of developing diabetes and a 1.4-fold increase in developing high cholesterol, regardless of HCT type, a finding that validates previous reports from long-term childhood and adult HCT survivors. While the mechanism by which total body radiation increases the risk of high cholesterol in HCT recipients is not clear, previous studies have shown that abdominal radiation contributes to known heart disease risk factors such as insulin resistance and an increase in body fat in treated cancer patients. This evidence suggests that radiation-induced pancreatic or liver injury may play a role in the HCT transplant survivor's development of heart disease by increasing their risk for heart disease risk factors.

Next, researchers assessed the role of transplant type on long-term HCT survivors’ risk of developing key heart disease risk factors. After reviewing the data, researchers observed that those who had received transplanted stem cells from an unrelated donor (allogeneic HCT) were at a significantly higher risk of developing high blood pressure, diabetes, and high cholesterol after transplant than those who had received blood-forming stem cells from their own body (autologous HCT). Over the 10-year study period, 45.3 percent of allogeneic HCT recipients developed high blood pressure, 32 percent developed diabetes, and 50.5 percent developed high cholesterol; whereas only 32 percent, 15.4 percent, and 43.3 percent of autologous HCT recipients developed these same conditions, respectively. Transplant recipients who had undergone an allogeneic HCT and who had experienced GVHD had the highest risk of developing heart disease risk factors, researchers concluded; 54.7 percent of this group developed high blood pressure, 25.8 percent developed diabetes, and 52.8 percent developed high cholesterol.

Not only did more allogeneic than autologous HCT recipients develop these heart disease risk factors, researchers found that patients who had undergone two or more transplant procedures were at a significantly higher risk of developing these conditions than patients who had undergone only one transplant. This finding highlights the importance of considering the number of transplant procedures when evaluating heart disease risk in long-term HCT survivors.
period, but they also developed them more quickly. Allogeneic HCT recipients developed high blood pr
high cholesterol both at a median time to onset of 2.5 months, compared with autologous HCT recipie
developed the same conditions at 3.7 years and 1.6 years, respectively. Allogeneic HCT recipients also d
abetes more than two years earlier than autologous recipients (1.2 year median time to onset for allog
recipients vs. 3.3 years for autologous transplant recipients).

In addition to evaluating incidence rates of key heart disease risk factors in this large group of long-ter
survivors, investigators also assessed their impact on survivors’ subsequent development of heart disea
115 patients went on to develop heart disease at a median rate of four years after HCT. At 10 years post
cumulative incidence of post-HCT heart disease in all survivors was approximately 7.8 percent, with th
exceeding 11 percent in the survivors with multiple heart disease risk factors. In those survivors with m
disease risk factors and past exposure to cardiotoxic chemotherapy or radiation, the incidence rose to a
percent, demonstrating that certain pre-transplant therapeutic exposures compound HCT recipients
developing heart disease.

“Our findings show that the process of receiving a stem cell transplant alone increases a recipient’s risk
heart disease; however, the type of transplant and whether the recipient was treated for GVHD can als
survivor’s heart disease risk as well,” said Dr. Armenian. “The results of this study demonstrate the imp
vention strategies that can help mitigate these modifiable heart disease risk factors in transplant re
before and after transplant, and we hope they can serve as a basis for creating a predictive model to ide
patients at highest risk of developing heart disease.”

Excerpt from:
Stem cell transplant survivors at increased risk of developing heart disease, study suggests

Provocative Biotech Exposition Reveals Significant Advancements in Stem Cell Re
Immunotherapy, Targeted …

STAMFORD, CT–(Marketwire – Oct 3, 2012) – Noble Financial Capital Markets (Noble) announced to
released a full high definition video catalog of its Life Sciences Exposition, BIOX, an investor exposition
at the University of Connecticut in Stamford, CT on September 24-25, 2012. In addition to the partici
than two dozen biotechnology companies, the event featured world renowned key opinion leaders Dr. M
(University of Rochester), R. Phil Greenberg (Fred Hutchinson Cancer Research Center), Dr. Jeffrey I
Cannon Research Institute), and Dr. Charles Vacanti (Harvard Medical School).

Opening remarks were provided by Dr. Sharon White, Director of the UCONN Stamford campus and Ri
Blumenthal, United States Senator for Connecticut. “Washington is dysfunctional and broken,” Blume
“The good news is that scientific advancements and research offer a real opportunity to reach across th
an area that should inspire bipartisan cooperation.”

Overwhelmingly, the message coming from the Exposition was one of encouragement that we are maki
strides in the effective treatment of catastrophic disease, in particular cancers. Determining genetic dif
zeros, which has posed challenges for biomarkers, has improved significantly with advancements in n
biology. Novel and approved targeted agents is the next rationale step in matching tumor types with ap
therapies; a developmental step that large pharmaceutical companies have already taken.

Dr. Noble, who led a panel moderated by Noble Financial Senior Analyst, Nathan Cali and consisting o
from Cytomedix, Cytori, MediStem, Mesoblast and NeoStem, expressed optimism that stem cell therap
grow exponentially. “Stem cells are a natural cascade offering the potential to treat significant unmet n
eds,” he said."The path to better cancer treatment comes from a clearer understanding of cancer ster

Rahul Jasuja, Noble Financial’s Managing Director of Biotechnology Research moderated the panel wh
immunotherapy and vaccines. Executives from Argos, Galena, Inovio, NewLink and Prima Biomed join
Greenberg (referred to as Dr. T-Cell) to debate the challenges and advancements in the understanding of the immune system is suppressed by cancer cells. While a consensus was not reached in terms of specific methods to harness the immune system, all agreed that the next generation of immunotherapy approaches will aim to harness the immune system to destroy cancer.

Jules Msing, Chairman of Noble’s Scientific Advisory Board and the former head of Global Drug Licensing at Johnson & Johnson addressed attendees at the opening session and again on day two of the Exposition. "The immune system is great at all of the technologies and innovations that will be discussed here today will have a huge impact on healthcare around the world," he said. “This, however, is reliant on the underlying assumption that sociedad acceptance of healthcare innovation and our willingness to invest in it will continue into the future,” he said. Msings' presentation to life science corporate executives centered on the question of why some biotech companies can attract the attention of large pharma while others cannot and why many licensing executives in large pharma unable to convince their R&D groups or executive committees to make substantial investments in these areas.

Mr. Msing negotiated deals with various companies such as Vertex Pharmaceuticals, Genentech, OSI Pharmaceuticals, Bristol Meyers Squibb, CTI Inc., Regeneron, Alkermes, Enzon Pharmaceuticals, GTx Pharmaceuticals, Allos Therapeutics, Somatogen, Morphotek, Edison Pharmaceuticals, etc.

Based upon the success of this event, Noble Financial has begun planning its second Life Sciences Exposition fall of 2013. Noble’s Ninth Annual large-format investor conference that will feature 150 public companies scheduled for January 22-23, 2013 at the Hard Rock Hotel in Fort Lauderdale.

More:

Provocative Biotech Exposition Reveals Significant Advancements in Stem Cell Research, Immunotherapy

New stem cell research could bring choices to heart patients

Contributed photo

Dr. Nabil Dib

They're called “no-option patients.”

They've endured angioplasty, stent procedures, bypasses and a long line of medications. None of the treatments fixed the plaque-plugged coronary arteries that trigger angina, starve the heart of blood and force people to walk two blocks.

Adult stem cell research at an Oxnard hospital is aimed at giving them choices.

“A patient who has no hope will have some hope,” said Dr. Nabil Dib, a world-renowned researcher at St. John’s Regional Medical Center. “It’s a hope for potential therapy that will revise the way we treat cardiovascular disease.”

Stem cells are blank cells that function as the body’s building blocks. They are able to grow into many different types of cells, including blood, muscle and tissue. Dib’s work involves adult stem cells harvested from his patients opposed to stem cells that come from embryos and trigger ethical debates.

In a clinical trial starting at St. John’s and 49 other hospitals across the country, the adult stem cells were used to create new blood vessels. It’s a way of manipulating the body into building new pathways for blood to impeded by barricaded arteries.

“We’re doing like a bypass a biological bypass,” Dib said.
The trial is part of a genre of research aimed at using the body's own resources to repair the heart. It comes with consequences ranging from heart transplants and hospitalizations to heart failure and death.

Read the original post:
New stem cell research could bring choices to heart patients

Windsor Broadcast Productions Launches New 30 Minute Series “Innovations in Medicine”

LOS ANGELES–(BUSINESS WIRE)–

The producers of the longest running television health series American Health Journal, Windsor Broadcast Productions, are launching Innovations in Medicine, a new series to air on PBS SoCal. Produced by Windsor Broadcast Productions, the series will feature new developments, technology, procedures, and products in various fields of medicine.

The company is currently in production of its first six segments for the premiere 30-minute episode.

“Audiences have been demanding for this type of programming for years,” said Executive Producer Rolando Colón. “We regularly receive great feedback from stories we’ve produced on new medical equipment in beta testing, even FDA approved. People want to know what’s going to be available to them.”

With Innovations in Medicine, Windsor will offer the first weekly show devoted to revealing compelling information previously available only from trade shows, healthcare insiders, medical journals, and research newsletters.

Segments featured in the premiere episode include the glucose sensor company Dexcom and AVIIR Labs, which focuses on advancing cardiovascular disease risk assessment, monitoring and an international stem cell research project. The first episode of Innovations in Medicine is slated to premiere on SoCal PBS in November of 2012.

About Windsor Broadcast Productions

Founded in 1976, Windsor Broadcast Productions is located in Palm Desert, California. In 1988, they launched the nationwide syndicated program American Health Journal which now reaches over 30 million homes. American Health Journal has received over 92 national and international awards. The show is sponsored by America and HF Healthcare.

Visit link:
Windsor Broadcast Productions Launches New 30 Minute Series "Innovations in Medicine"

New study sheds light on bone marrow stem cell therapy for pancreatic recovery

ScienceDaily (Oct. 2, 2012) Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute have found that a blood vessel-building gene boosts the ability of human bone marrow stem cells to sustain pancreatic repair in a laboratory mouse model of insulin-dependent diabetes.

The findings, published in a PLoS ONE article of the Public Library of Science, offer new insights on molecular pathways involved in regeneration of insulin-producing cells and provide new evidence that a diabetic’s own bone marrow may be a source of treatment.

Scientists began studying bone marrow-derived stem cells for pancreatic regeneration a decade ago. Recent advances involving several pancreas-related genes and delivery methods — transplantation into the organ or injection into the bloodstream — have shown that bone marrow stem cell therapy could reverse or improve diabetes in some lab animal models. But little has been known about how stem cells affect beta cells — pancreas cells that produce insulin — and how they might promote sustained beta cell renewal and insulin production.
When the Cedars-Sinai researchers modified bone marrow stem cells to express a certain gene (vascular growth factor, or VEGF), pancreatic recovery was sustained as mouse pancreases were able to generate The VEGF-modified stem cells promoted growth of needed blood vessels and supported activation of gene in insulin production. Bone marrow stem cells modified with a different gene, PDX1, which is important for development and maintenance of beta cells, resulted in temporary but not sustained beta cell recovery.

“Our study is the first to show that VEGF contributes to revascularization and recovery after pancreatic regeneration demonstrates the possible clinical benefits of using bone marrow-derived stem cells, modified to express the treatment of insulin-dependent diabetes,” said John S. Yu, MD, professor and vice chair of the I Neurosurgery at Cedars-Sinai, senior author of the journal article.

Diabetes was reversed in five of nine mice treated with the injection of VEGF-modified cells, and near-normal blood sugar levels were maintained through the remainder of the six-week study period. The other four mice gained weight, suggesting treatment was beneficial even when it did not prompt complete reversal. Lab confirmed that genetically-modified cells survived and grew in the pancreas and supported the repopulation of vessels and beta cells.

Anna Milanesi, MD, PhD, working in Yu’s lab as an endocrinology fellow, is the article’s first author. They cautioned that although this and other related studies help scientists gain a better understanding of the pathways involved in pancreatic regeneration, more research is needed before human clinical trials can be considered.

Insulin-dependent diabetes occurs when beta cells of the pancreas fail to produce insulin, a hormone that helps regulate sugar in the blood. Patients must take insulin injections or consider transplantation of a whole pancreas to make insulin, but transplantation carries the risk of cell rejection.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Here is the original post:

New study sheds light on bone marrow stem cell therapy for pancreatic recovery