An Overview of Weighted Gene Co-Expression Network Analysis

Steve Horvath
University of California, Los Angeles
Contents

• How to construct a weighted gene co-expression network?
• Why use soft thresholding?
• How to detect network modules?
• How to relate modules to an external clinical trait?
• What is intramodular connectivity?
• How to use networks for gene screening?
• How to integrate networks with genetic marker data?
• What is weighted gene co-expression network analysis (WGCNA)?
• What is neighborhood analysis?
Philosophy of Weighted Gene Co-Expression Network Analysis

• Understand the “system” instead of reporting a list of individual parts
 – Describe the functioning of the engine instead of enumerating individual nuts and bolts
• Focus on modules as opposed to individual genes
 – this greatly alleviates multiple testing problem
• Network terminology is intuitive to biologists
How to construct a weighted gene co-expression network?

Network=Adjacency Matrix

- A network can be represented by an adjacency matrix, \(A = [a_{ij}] \), that encodes whether/how a pair of nodes is connected.
 - \(A \) is a symmetric matrix with entries in [0,1]
 - For unweighted network, entries are 1 or 0 depending on whether or not 2 nodes are adjacent (connected)
 - For weighted networks, the adjacency matrix reports the connection strength between gene pairs
Steps for constructing a co-expression network

A) Microarray gene expression data
B) Measure concordance of gene expression with a Pearson correlation
C) The Pearson correlation matrix is either dichotomized to arrive at an adjacency matrix → unweighted network
 Or transformed continuously with the power adjacency function → weighted network
Power adjacency function results in a weighted gene network

\[a_{ij} = |\text{cor}(x_i, x_j)|^\beta \]

Often choosing beta=6 works well but in general we use the “scale free topology criterion” described in Zhang and Horvath 2005.
Comparing adjacency functions

Power Adjacency vs Step Function
Comparing the power adjacency function to the step function

- While the network analysis results are usually highly robust with respect to the network construction method there are several reasons for preferring the power adjacency function.
 - Empirical finding: Network results are highly robust with respect to the choice of the power beta
 - Theoretical finding: Network Concepts make more sense in terms of the module eigengene.
How to detect network modules?
Module Definition

• Numerous methods have been developed
• Here, we use average linkage hierarchical clustering coupled with the topological overlap dissimilarity measure.
• Once a dendrogram is obtained from a hierarchical clustering method, we choose a height cutoff to arrive at a clustering.
• Modules correspond to branches of the dendrogram
The topological overlap dissimilarity is used as input of hierarchical clustering

\[
\text{TOM}_{ij} = \sum_u a_{iu} a_{uj} + a_{ij} \ \ \text{and} \ \ \frac{1}{\min(k_i, k_j) + 1 - a_{ij}}
\]

\[
\text{DistTOM}_{ij} = 1 - \text{TOM}_{ij}
\]

- Generalized in Zhang and Horvath (2005) to the case of weighted networks
- Generalized in Yip and Horvath (2006) to higher order interactions
Using the topological overlap matrix (TOM) to cluster genes

- Here modules correspond to branches of the dendrogram

TOM plot

Genes correspond to rows and columns
Hierarchical clustering dendrogram

TOM matrix
Module: Correspond to branches
Genetics of gene expression and its effect on disease

Valur Emilsson1,2, Gudmar Thorleifsson1, Bin Zhang2, Amy S. Leonardson2, Florian Zink1, Jun Zhu3, Sonia Carlson2, Agnar Helgason1, G. Bragi Walters1, Steinunn Gunnarsdottir1, Magali Mouy1, Valgerdur Steinthorsdottir1, Gudrun H. Eiriksdottir1, Gyda Bjornsdottir1, Inga Reynisdottir1, Daniel Gudbjartsson1, Anna Helgadottir1, Aslæg Jonasdottir1, Adalbjorg Jonasdottir1, Unnur Styrkarsdottir1, Solveig Grettardottir1, Kristinn P. Magnusson1, Hreinn Stefansson1, Ragnheidur Fossdal1, Kristleifur Kristjansson1, Hjortur G. Gislason3, Tryggvi Stefansson4, Björn G. Leifsson3, Unnur Thorsteinsdottir1, John R. Lamb2, Jeffrey R. Gulcher1, Marc L. Reitman3, Augustine Kong1, Eric E. Schadt2* & Kari Stefansson1*
Different Ways of Depicting Gene Modules

Topological Overlap Plot

1) Rows and columns correspond to genes
2) Red boxes along diagonal are modules
3) Color bands = modules

Multi Dimensional Scaling

Idea:
Use network distance in MDS

Gene Functions

- Immune Response, 186 genes
 - p = 5.4 x 10^{-38}
- Mitosis, 185 genes
 - p = 7.2 x 10^{-42}
- Neuronal processes, 143 genes
 - p = 3.0 x 10^{-72}
- Lipid metabolism, 136 genes

Traditional View
Heatmap view of module

Columns = tissue samples

Rows = Genes
Color band indicates module membership

Message: characteristic vertical bands indicate tight co-expression of module genes
Module Eigengene = measure of over-expression = average redness

Rows, = genes, Columns = microarray

The brown module eigengenes across samples
Module eigengenes can be used to determine whether 2 modules are correlated. If correlation of MEs is high—> consider merging.

Eigengenes can be used to build separate networks…
Consensus eigengene networks in male and female mouse liver data and their relationship to physiological traits

How to relate modules to external data?
Clinical trait (e.g. case-control status) gives rise to a gene significance measure

- Abstract definition of a gene significance measure
 - GS(i) is non-negative,
 - the bigger, the more *biologically* significant for the i-th gene

Equivalent definitions

- GS.ClinicalTrait(i) = |\text{cor}(x(i),\text{ClinicalTrait})|
 where x(i) is the gene expression profile of the i-th gene
- GS(i) = |T-test(i)| of differential expression between groups defined by the trait
- GS(i) = −log(p-value)
A SNP marker naturally gives rise to a measure of gene significance

\[GS.SNP(i) = |cor(x(i), SNP)|. \]

- Additive SNP marker coding: AA->2, AB->1, BB->0
- Absolute value of the correlation ensures that this is equivalent to AA->0, AB->1, BB->2
 - Dominant or recessive coding may be more appropriate in some situations
 - Conceptually related to a LOD score at the SNP marker for the i-th gene expression trait
A gene significance naturally gives rise to a module significance measure

- Define module significance as mean gene significance
- Often highly related to the correlation between module eigengene and trait
Important Task in Many Genomic Applications: Given a network (pathway) of interacting genes how to find the central players?
Flight connections and hub airports

The nodes with the largest number of links (connections) are most important!

Slide courtesy of A Barabasi
What is intramodular connectivity?
Generalized Connectivity

- Gene connectivity = row sum of the adjacency matrix
 - For unweighted networks = number of direct neighbors
 - For weighted networks = sum of connection strengths to other nodes

\[k_i = \sum_j a_{ij} \]
Gene significance versus intramodular connectivity kIN

cor = -0.34 p = 2.6e-05

cor = 0.069 p = 0.14

cor = 0.19 p = 7.5e-05

cor = 0.31 p = 4.1e-06

cor = -0.28 p < 10^{-20}

cor = -0.16 p = 0.096

cor = 0.44 p = 6.8e-09

cor = 0.3 p = 9.3e-16

cor = 0.27 p = 2.7e-07
How to use networks for gene screening?
Intramodular connectivity kIN versus gene significance GS

• Note the relatively high correlation between gene significance and intramodular connectivity in some modules
• In general, kIN is a more reliable measure than GS
• In practice, a combination of GS and k should be used
• Module eigengene turns out to be the most highly connected gene (under mild assumptions)
What is weighted gene co-expression network analysis?
Construct a network
Rationale: make use of interaction patterns between genes

Identify modules
Rationale: module (pathway) based analysis

Relate modules to external information
Array Information: Clinical data, SNPs, proteomics
Gene Information: gene ontology, EASE, IPA
Rationale: find biologically interesting modules

Study Module Preservation across different data
Rationale:
• Same data: to check robustness of module definition
• Different data: to find interesting modules.

Find the key drivers in interesting modules
Tools: intramodular connectivity, causality testing
Rationale: experimental validation, therapeutics, biomarkers
What is different from other analyses?

- **Emphasis on modules (pathways) instead of individual genes**
 - Greatly alleviates the problem of multiple comparisons
 - Less than 20 comparisons versus 20000 comparisons

- **Use of intramodular connectivity to find key drivers**
 - Quantifies module membership (centrality)
 - Highly connected genes have an increased chance of validation

- **Module definition is based on gene expression data**
 - No prior pathway information is used for module definition
 - Two module (eigengenes) can be highly correlated

- **Emphasis on a unified approach for relating variables**
 - Default: power of a correlation
 - Rationale:
 - puts different data sets on the same mathematical footing
 - Considers effect size estimates (cor) and significance level
 - p-values are highly affected by sample sizes (cor=0.01 is highly significant when dealing with 100000 observations)

- **Technical Details:** soft thresholding with the power adjacency function, topological overlap matrix to measure interconnectedness
Case Study 1:
Finding brain cancer genes

Different Ways of Depicting Gene Modules

Topological Overlap Plot
1) Rows and columns correspond to genes
2) Red boxes along diagonal are modules
3) Color bands = modules

Gene Functions

Multi Dimensional Scaling

Traditional View
Comparing the Module Structure in Cancer and Normal tissues

55 Brain Tumors

VALIDATION DATA: 65 Brain Tumors

Messages:
1) Cancer modules can be independently validated
2) Modules in brain cancer tissue can also be found in normal, non-brain tissue.

--> Insights into the biology of cancer
Mean Prognostic Significance of Module Genes

Message: Focus the attention on the brown module genes
Module hub genes predict cancer survival

1. Cox model to regress survival on gene expression levels

2. Defined prognostic significance as $-\log_{10}(\text{Cox-p-value})$ the survival association between each gene and glioblastoma patient survival

3. A module-based measure of gene connectivity significantly and reproducibly identifies the genes that most strongly predict patient survival

Test set – 55 gbms
\[r = 0.56; \ p = 2.2 \times 10^{-16} \]

Validation set – 65 gbms
\[r = 0.55; \ p = 2.2 \times 10^{-16} \]
The fact that genes with high intramodular connectivity are more likely to be prognostically significant facilitates a novel screening strategy for finding prognostic genes

- **Focus on those genes with significant Cox regression p-value AND high intramodular connectivity.**
 - It is essential to take a module centric view: focus on intramodular connectivity of disease related module

- Validation success rate= proportion of genes with independent test set Cox regression p-value<0.05.
- Validation success rate of network based screening approach (68%)
- Standard approach involving top 300 most significant genes: 26%
Validation success rate of gene expressions in independent data

300 most significant genes (Cox p-value < 1.3 \times 10^{-3})

Network based screening p < 0.05 and high intramodular connectivity

26%

67%
The network-based approach uncovers novel therapeutic targets

Five of the top six hub genes in the mitosis module are already known cancer targets: topoisomerase II, Rac1, TPX2, EZH2 and KIF14. We hypothesized that the 6-th gene ASPM gene is novel therapeutic target. ASPM encodes the human ortholog of a drosophila mitotic spindle protein.

Biological validation: siRNA mediated inhibition of ASPM
Case Study 2

What changed?

- Despite pronounced phenotypic differences, genomic similarity is ~96% (including single-base substitutions and indels)\(^1\)
 - Similarity is even higher in protein-coding regions

Assessing the contribution of regulatory changes to human evolution

• Hypothesis: Changes in the regulation of gene expression were critical during recent human evolution (King & Wilson, 1975)

• Microarrays are ideally suited to test this hypothesis by comparing expression levels for thousands of genes simultaneously
Gene expression is more strongly preserved than gene connectivity

Hypothesis: molecular wiring makes us human

Raw data from Khaitovich et al., 2004
Mike Oldham
Connectivity diverges across brain regions whereas expression does not.
Conclusions: chimp/human

• Gene expression is highly preserved across species brains
• Gene co-expression is less preserved
• Some modules are highly preserved
• Gene modules correspond roughly to brain architecture
• Species-specific hubs can be validated in silico using sequence comparisons
Software and Data Availability

• Sample data and R software tutorials can be found at the following webpage
 • http://www.genetics.ucla.edu/labs/horvath/Coexpression Network
• An R package and accompanying tutorial can be found here:
 • http://www.genetics.ucla.edu/labs/horvath/Coexpression Network/Rpackages/WGCNA/
• Tutorial for this R package
 • http://www.genetics.ucla.edu/labs/horvath/Coexpression Network/Rpackages/WGCNA/TutorialWGCNApackage.doc
THE END