Differential Network Analysis in Mouse Expression Data

Tova Fuller
Steve Horvath
Department of Human Genetics
University of California, Los Angeles
BIOCOMP'07 Conference, 6/26/07
Outline

• Introduction:
 – Single versus differential network analysis
• Differential Network construction
• Results
• Functional Analysis
• Conclusion
Goals of Single Network Analysis

• Identifying genetic pathways (modules)
• Finding key drivers (hub genes)
• Modeling the relationships between:
 – Transcriptome
 – Clinical traits / Phenotypes
 – Genetic marker data
Validation set 1
Validation set 2

Single Network WGCNA

1 gene co-expression network
Multiple data sets may be used for validation
Goals of Differential Network Analysis

• Uncover differences in modules and connectivity in different data sets
 – Ex: Human versus chimpanzee brains (Oldham et al. 2006)

• Differing topology in multiple networks reveals genes/pathways that are wired differently in different sample populations

Differential Network WGCNA

2+ gene co-expression networks
Identify genes and pathways that are:
1. Differentially expressed
2. Differentially wired
BxH Mouse Data

• Single network analysis female BxH mice revealed a weight-related module (Ghazalpour et al. 2006)

• **Samples:** Constructed networks from mice from extrema of weight spectrum:
 – Network 1: 30 leanest mice
 – Network 2: 30 heaviest mice

• **Transcripts:** Used 3421 most connected and varying transcripts

Methods

Compute Comparison Metrics
- Difference in expression: t-test statistic
- Compare difference in connectivity: DiffK

Identify significantly different genes/pathways
Permutation test

Functional analysis of significant genes/pathways
DAVID database
Primary literature
Computing Comparison Metrics

Differential Expression

t-test statistic computed for each gene, $t(i)$

Differential Connectivity

\[
K_1(i) = \frac{k_1(i)}{\max(k_1)} \quad K_2(i) = \frac{k_2(i)}{\max(k_2)}
\]

$DiffK(i)$: difference in normalized connectivities for each gene:

\[
DiffK(i) = K_1(i) - K_2(i)
\]
We visualize the comparison metrics via a sector plot:

- x-axis: DiffK
- y-axis: t statistics

We establish sector boundaries to identify regions of differentially expressed and/or connected regions

- $|t| = 1.96$ corresponding to $p = 0.05$
- $|\text{DiffK}| = 0.4$
Permutation test: Identifying significant sectors

\[
p_j = \frac{\text{#}(\text{obs}_j \text{perm}_j) + 1}{\text{no.perms} + 1}
\]
Sector Plot Results

Colored by Network 1 Modules, cor= 0.176

Permutated, cor= -0.0764

0.001 0.001

0.001 0.01
Functional Analysis

SECTOR 3
- High t statistic
- High DiffK
- Yellow module in lean
- Grey in obese
- (63 genes)

SECTOR 5
- Low t statistic
- High Diff K
- (28 genes)

Genes in these sectors have higher connectivity in lean than obese mice:

\[\sim \text{pathways potentially disregulated in obesity}\ \sim\]
Sector 3: Functional Analysis Results

DAVID Database

• “Extracellular”:
 – extracellular region (38% of genes $p = 1.8 \times 10^{-4}$)
 – extracellular space (34% of genes $p = 5.7 \times 10^{-4}$)
• signaling (36% of genes $p = 5.4 \times 10^{-4}$)
• cell adhesion (16% of genes $p = 7.7 \times 10^{-4}$)
• glycoproteins (34% of genes $p = 1.6 \times 10^{-3}$)
• 12 terms for epidermal growth factor or its related proteins
 – EGF-like 1 (8.2% of genes $p = 8.7 \times 10^{-4}$),
 – EGF-like 3 (6.6% of genes $p = 1.6 \times 10^{-3}$),
 – EGF-like 2 (6.6% of genes $p = 6.0 \times 10^{-3}$),
 – EGF (8.2% of genes $p = 0.013$)
 – EGF_CA (6.6% of genes $p = 0.015$)
Sector 3: Functional Analysis Results
Primary Literature

- Results supported by a study on EGF levels in mice (Kurachi et al. 1993)
 - EGF found to be increased in obese mice
 - Obesity was reversed in these mice by:
 - Administration of anti-EGF
 - Sialoadenectomy

Sector 5:
Functional Analysis Results
DAVID Database

- Enzyme inhibitor activity ($p = 2.9 \times 10^{-3}$)*
- Protease inhibitor activity ($p = 6.0 \times 10^{-3}$)
- Endopeptidase inhibitor activity ($p = 6.0 \times 10^{-3}$)
- Dephosphorylation ($p = 0.012$)
- Protein amino acid dephosphorylation ($p = 0.012$)
- Serine-type endopeptidase inhibitor activity ($p = 0.042$)

* p values shown are corrected using Bonferroni correction
Sector 5: Functional Analysis Results
Primary Literature

Itih1 and *Itih3*
- Enriched for all categories shown previously
- Located near a QTL for hyperinsulinemia (Almind and Kahn 2004)
- *Itih3* identified as a gene candidate for obesity-related traits based on differential expression in murine hypothalamus (Bischof and Wevrick 2005)

Serpina3n and *Serpina10*
- Enriched for enzyme inhibitor, protease inhibitor, and endopeptidase inhibitor
- *Serpina10*, or Protein Z-dependent protease inhibitor (ZPI) has been found to be associated with venous thrombosis (Van de Water et al. 2004)

Conclusions

• Differential Network Analysis reveals pathways that are both differentially regulated and connected in mouse obesity
 – Genes that are differentially connected may/may not be differentially expressed

• Primary literature supports biological plausibility of these pathways in weight related disorders
 – Sector 3 & EGF pathways: potential EGF causality in obesity
 – Sector 5 & serine protease pathways: potential link between obesity and venous thrombosis

• These results help identify targets for validation with biological experiments
Acknowledgements

Guidance

HORVATH LAB
Steve Horvath
Jason Aten
Jun Dong
Peter Langfelder
Ai Li
Wen Lin
Anja Presson
Lin Wang
Wei Zhao

Collaboration

LUSIS LAB
Jake Lusis
Anatole Ghazalpour
Thomas Drake

Funding

UCLA Medical Scientist Training Program (MD/PhD)

An R tutorial may be found at:
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/DifferentialNetworkAnalysis